Marker-based estimation of the coefficient of coancestry in hybrid breeding programmes

S. Maenhout1 \quad B. De Baets2 \quad G. Haesaert1

1Department of Plant Production
University College Ghent, Belgium

2Department of Applied Mathematics, Biometrics and Process Control
Ghent University, Belgium

XIV meeting of the Biometrics in Plant Breeding Section
1 Introduction

2 WAIS estimator
 - Properties
 - Simulation study
 - Maize breeding data

3 CoCoa
1 Introduction

2 WAIS estimator
 - Properties
 - Simulation study
 - Maize breeding data

3 CoCoa
The coefficient of coancestry (CoC) between two individuals i and j is defined as the probability that at an allele drawn from both i and j at the same locus is identical by descent (ibd) from a recent common ancestor.

- is often used to model the covariance between polygenic backgrounds in breeding value estimation or association studies
- can be estimated from pedigree information (e.g. tabular method)
 - requires pedigree knowledge tracing back to the natural populations
 - assumes equal contribution of both parents (absence of selection, genetic drift, . . .)
The CoC can be estimated from similarities in molecular marker fingerprints but:

- an allele identity does not necessarily reflect an identity by descent
- assumptions made by estimators from population genetics are often violated in breeding pools
 - knowledge of allele frequencies
 - linkage equilibrium between markers
 - Hardy-Weinberg equilibrium
- resulting estimators do not always lie within the unit interval \([0, 1]\)
- resulting coancestry matrices \(A\) are not necessarily positive semi-definite
A matrix is psd if all its eigenvalues are greater or equal to zero or equivalently if

$$\mathbf{v}' \mathbf{A} \mathbf{v} \geq 0, \quad \forall \mathbf{v} \neq \mathbf{0}.$$

- every variance-covariance matrix is psd by definition!
- if $\text{Var}(\mathbf{g}) = 2\sigma^2 \mathbf{g}$ then CoC matrix \mathbf{A} must be psd as well
- linear mixed model packages rely on the psd property of user supplied coancestry matrices
Outline

1. Introduction

2. WAIS estimator
 - Properties
 - Simulation study
 - Maize breeding data

3. CoCoea
Calculation of WAIS

\[A^{WAIS} = \frac{1}{4I} (XX' + Q), \]

- **W** is a diagonal matrix containing a weight for each allele \(z \):
 \[\omega_z = P(\alpha_i = \alpha_j \mid \alpha_i = z, \alpha_j = z) \]
- **Q** diagonal matrix containing a correction factor for each genotype \(i \):
 \[q_i = \sum_{z=1}^{p} x_{(i,z)}^2 y_{i,z} \]
The WAIS estimator is ideally suited for use in hybrid breeding programs:

- corrects the observed allele identities by means of allele-dependent weights
- weights are estimated from observed allele identities between unrelated genotypes (cf. Bernardo, 1993)
- allows for a mix of inbred and non-inbred genotypes
- all coancestry estimates are guaranteed to lie within the unit interval
- always produces psd coancestry matrices
- achieves a similar or better linear mixed model fit compared to other marker-based estimators
Simulated breeding data

Studying the behaviour of WAIS in breeding pools requires simulation of the entire breeding history including:

- artificial phenotypical selection
- linkage disequilibrium between marker loci
- varying genotype relatedness

We simulated 8 breeding cycles (cf. Stich et al. 2007, Hohenheim University maize breeding program):

- 250 QTL, allele number $\sim \text{Pois}(\lambda+2)$, $\lambda = 0 \ldots 12$
- allele frequencies in subpopulations $\sim \text{Dir}(a)$ where $a = \{p(\frac{1-Fst}{Fst})\}$ (Balding, 2003)
- 101 SSR markers (RAGT R2n linkage map)
After each breeding cycle the following CoC estimators were calculated:

- the actual ibd CoC
- pedigree-based CoC
- uncorrected alikeness in state (AIS)
- WAIS
- BNO (Bernardo, 1993)
- MLE, maximum likelihood estimator (Thompson, 1975)
- LOI (Loiselle et al., 1995)
Bias and variance

Average root mean squared error over 100 iterations:

- Fst: 0.1
- Fst: 0.2
- Fst: 0.3
- Fst: 0.4

λ: 4

λ: 8

λ: 12
Proportion of non-psd matrices

MLE

LOI

Number of breeding cycles

Proportion

\(\lambda = 0 \) ○

\(\lambda = 4 \) △

\(\lambda = 8 \) +

\(\lambda = 12 \) ×

Steven Maenhout, Bernard De Baets, Geert Haesaert

WAIS: Weighted Alikeness In State
Application to maize breeding data

The pedigree and five marker-based CoC measures were used to model the covariance of GCA and SCA components in a linear mixed model analysis of a subset of the phenotypic evaluation data of the maize breeding program of RAGT R2n:

- 2,367 hybrids
- 92 Iodent and 105 Iowa Stiff Stalk Synthetic lines genotypes with 75 SSR markers
- 40,432 plots
- 1,280 multi-environment trials
- 110 locations spread over Europe
- 3 traits: grain yield, grain moisture content, days until flowering
Range of pairwise CoC estimates
Restricted log-likelihoods

<table>
<thead>
<tr>
<th></th>
<th>yield</th>
<th>moisture %</th>
<th>flowering</th>
</tr>
</thead>
<tbody>
<tr>
<td>PED</td>
<td>$-222740.1 \ (4)$</td>
<td>$-194696.6 \ (1)$</td>
<td>$-55339.6 \ (1)$</td>
</tr>
<tr>
<td>AIS</td>
<td>$-222734.8 \ (2)$</td>
<td>$-194710.8 \ (2)$</td>
<td>$-55343.8 \ (2)$</td>
</tr>
<tr>
<td>BNO</td>
<td>$-222734.8 \ (1)$</td>
<td>$-194712.9 \ (3)$</td>
<td>$-55344.1 \ (3)$</td>
</tr>
<tr>
<td>WAIS</td>
<td>$-222739.2 \ (3)$</td>
<td>$-194715.3 \ (4)$</td>
<td>$-55347.7 \ (4)$</td>
</tr>
<tr>
<td>MLE</td>
<td>$-222743.2 \ (6)$</td>
<td>$-194716.2 \ (5)$</td>
<td>$-55357.0 \ (5)$</td>
</tr>
<tr>
<td>LOI</td>
<td>$-222741.0 \ (5)$</td>
<td>$-194725.6 \ (6)$</td>
<td>$-55361.9 \ (6)$</td>
</tr>
</tbody>
</table>

- BNO and LOI values were bounded within the unit interval
- MLE and the bounded LOI matrices were bended towards the closest psd matrix
Outline

1. Introduction
2. WAIS estimator
 - Properties
 - Simulation study
 - Maize breeding data
3. CoCoa
CoCoa: software for estimating the coefficient of coancestry from multilocus genotype data

- provides AIS, WAIS, BNO, MLE and LOI estimators
- uses the same input file format as Structure (Pritchard et al. 2000)
- allows to invert well-conditioned CoC matrices
- provides 2 bending routines for bending non-psd or (nearly) singular matrices
- allows to export (inverse) CoC matrices in file formats used by ASReml, SAS Proc Mixed, Wombat, Matlab, ...
- available for Linux and Windows OS
- freely available, open source (GNU General Public License)
CoCoa user interface
CoCoa homepage

http://webs.hogent.be/cocoa

provides:

- Windows installer
- 32 and 64 bit binaries for Linux
- manual
- C++ and Java source code
- ...
Summary

WAIS:
- is a new, marker-based CoC estimation procedure ideally suited for use in hybrid breeding programs
- estimators always lie within the unit interval
- resulting CoC matrices are guaranteed to be psd
- WAIS performs best in advanced cycle breeding pools

CoCoa:
- is a free software tool for estimating the CoC from molecular marker data
- provides 5 estimation procedures: AIS, WAIS, BNO, MLE and LOI
- provides several useful matrix manipulation tools: bending, bounding, inversion, ...